A partially linearized sigma point filter for latent state estimation in nonlinear time series models

نویسندگان

  • Paresh Date
  • Luka Jalen
  • Rogemar S. Mamon
چکیده

A new technique for the latent state estimation of a wide class of nonlinear time series models is proposed. In particular, we develop a partially linearized sigma point filter in which random samples of possible state values are generated at the prediction step using an exact moment matching algorithm and then a linear programming-based procedure is used in the update step of the state estimation. The effectiveness of the new filtering procedure is assessed via a simulation example that deals with a highly nonlinear, multivariate time series representing an interest rate process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new algorithm for latent state estimation in non-linear time series models

We consider the problem of optimal state estimation for a wide class of nonlinear time series models. A modified sigma point filter is proposed, which uses a new procedure for generating sigma points. Unlike the existing sigma point generation methodologies in engineering where negative probability weights may occur, we develop an algorithm capable of generating sample points that always form a...

متن کامل

Rotated Unscented Kalman Filter for Two State Nonlinear Systems

In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...

متن کامل

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

Contributions to The Estimation of Mixed-State Conditionally Heteroscedastic Latent Factor Models: A Comparative Study

Mixed-State conditionally heteroscedastic latent factor models attempt to describe a complex nonlinear dynamic system with a succession of linear latent factor models indexed by a switching variable. Unfortunately, despite the framework’s simplicity exact state and parameter estimation are still intractable because of the interdependency across the latent factor volatility processes. Recently, ...

متن کامل

Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series

Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 233  شماره 

صفحات  -

تاریخ انتشار 2010